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Tl~e electron-density function is considered at a set of n s equidistant points covering the period of 
• a row with high indices [nSnl], with n-1000. This one-dimensional representation of the crystal 
yields as much information as the conventional evaluation at the n by n by n points of a grid defined 
by three sets of lines parallel to the co-ordinate axes. The summation of the Fourier series is thereby 
considerably, simplified. The function can be evaluated rapidly at isolated points. The method is 
also applicable to the calculation of structure factors. 

Introduct ion  

The electron-density function p (x, y, z) of a crystal is 
periodic in the distances a, b, c parallel to x, y, z, re- 
spectively. I t  is customary to evaluate this function 
(or one of its projections or sections) within one cell (or 
one mesh), at  the points of a grid defined by the inter- 
sections of lines parallel to the co-ordinate axes. We 
propose to show that ,  in certain cases, the electron 
density may be more easily calculated at any one of a set 
of equidistant points covering the period of a row with 
high indices. The method can also be applied to the 
computation of structure factors. 

Principle  o f  the m e t h o d .  

First  consider the two-dimensional case. Let a function 
g (x, y) be periodic in a and b parallel to x and y (Fig. 1). 

• Consider a multiple mesh OAP~C, consisting of n 
meshes in a row along the y axis. I ts diagonal OP~ is 
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Fig. 1. Mesh OABP~ and diagonal OP n of a row of meshes. 

divided into n equal line segments by the boundaries of 
successive meshes. Let OP, be divided into n 2 equal 
parts by a set of non-equivalent points: The latter have 
translation-equivalent points in mesh OABP~, which fall 
on a grid of n by n points (Fig. 2 (a)) different from the 
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usual one (Fig. 2 (b)) in tha t  one set of lines is oblique, 
instead of parallel, to the y axis. Provided n is chosen 
large enough, any point (x, y) of 'the mesh may  be 
approximated by a point (X) of the set on the row 
OP~[n~l]. The function g(x, y) can thus be replaced by 
a one-dimensional function g(X). 

Now take the three-dimensional case. Consider 
(Fig. 3 (a)) a multiple cell OADECFGH consisting of n 
cells in a row along the y axis. I ts diagonal plane is a 
net with mesh OAGH (Figs. 3(a), (b)); the latter is 
divided into n equal areal segments by successive (010) 
net planes. Then consider a multiple mesh OJKH con- 
sisting of n ~ meshes along the x axis. I ts  diagonal OK 

/ / / / / 1  i i i i i /  
~11 

Ca) ' (b) 

Fig. 2. (a) Proposed grid of points. (b) Usual grid of points. 

is the period of the row I n ,  l]; it is divided into n 2 equal 
line segments by  successive (100) net planes. Let  OK 
be divided into n 3 equal parts by a set of non-equivalent 
points. Translation-equivalent points in the original cell 
fall on a grid of n by n by n points (hereafter referred to 
as ' the  grid'), situated (Fig. 3 (a)) at the intersections of 
three sets of lines; one set, parallel to OC [001], is 
parallel to the z axis, while the other two sets, parallel 
to OK [n~nl] and OH [0nl], are slightly oblique to the 
x and y axes, respectively. Again, provided n is chosen 
sufficiently large, the three-dimensional function, say 
p(x, y, z), can be replaced by p(X), where X is the 
fractional co-ordinate of a point of the set on the row 
OK [n2nl], given in terms of the period OK (0 < X <~ 1). 

One may wonder why the special row I n ,  l] has been 
selected for the purpose. Other special cases and the 



J. D. H. D O N N A Y  AND G A B R I E L L E '  H A M B U R G E R  D O N N A Y  367 

general case of row [uvw], with u, v: w coprime integers, 
are not interesting because they do not lead to a con- 
venient grid of translation-equivalent points in the cell 
(Donnay & Hamburger, 1948a). 

Transformation of co-ordinates 

Consider (Fig. 3 (a)) the two systems of co-ordinates: 

a= OA, b = OB, c = OC 

and a = OK~n"., b = OH/n, c = OC. 

The matrix ( i  11/n 1/n')  

0 11/n (1) 

expresses the transformation from system a b c  to 
system abe and from indices Mcl to indices Df[. "It 
follows (International Tables, vol. l, pp. 73-4) tha t  the 
transformation of fractional co-ordinates ~, r), 3, 
measured in terms of a, b, c, to x, y, z, measured in terms 
of a, b, c, is given by the matri.x 

0 i) 1/n 1 , (2) 

\ l / n  ~ 1 /~  

that  the inverse transformations, abe to a b e  and 
I)f[ to hkl, are given by 

1 - /n  , (3) 

0 

and tha t  the transformation x, y, z to ~, 1), 3 is given by 0o) 
- ] / n  1 . (4) 

o - 1 / ~  

The numerical value of n is determined by .the 
accuracy with which a given point x, y, z is located in 
the cell. I f  its co-ordinates are given to m decimal 
places, the cell can be subdivided into (10m) 3 'uncer- 
ta in ty  parallelepipeds'. Although the rounding off-of 
the co-ordinates arbitrarily places the point at  the 
origin of such a parallelepiped, all we really know is tha t  
the point lies somewhere in its interior. I f  no accuracy 
is to be lost in the transformations, every parallele- 
piped must contain one of the n 3 points of the grid. 
Hence n 3 must be equal to (10m) 8, or n =  10% For 
practical purposes we assume the co-ordinates x, y, z to 
be given to three significant places (m=3),  and we 
therefore take n = 1000. 
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Fig. 3. (a) Body-diagonal O K  of a twice-multiple cell (n2a, nb, c). (b) Mesh O A G H  and 
multiple mesh O J K H  with diagonal OK.  
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Any point in the cell being given by its co-ordinates Conversely, given any point X of the set on the row, 
x, y, z, the co-ordinates ~, 19, 3 o.f the same point can be '  from equation (6) we find the corresponding t ' ,  r)', 3' of 
obtained rigorously by using matrix (4): 

z = x ;  r ) = y - x / n ;  $ = z - y / n .  

They are rounded to three decimals, however, so tha t  
the rounded-off co-ordinates ~', 1)', 3' designate a point 
of the grid, namely, the one that  lies closest to the given 
point in the cell: 

~ '  = X ;  " , '~ 

r) '=y if. x<0.500, r ) ' =y -0 .001  if x>~0.500;~ (5) 

( = z  if  y<0.500, 3 ' = z - 0 . 0 0 1  if y~>0.500.J 

The transformation of the co-ordinates z', r)', 3' to 
the co-ordinate X consists in finding the point of the 
ro~v OK that  is translation equivalent to the given point 
x', r)', ~'. The mesh O A G H  (Fig. 4) contains n 3 points, 
translation equivalent to the set of n 3 points on the row 
OK. Notice that  the given point, lies in the areal seg- 
ment numbered n3', falls within that  segment on the 

A -n  
Areal Areal 

segment segment 
no. 0 no. 1 

Line 
segment no. n~' 

~O 

0 1 ~ n-1 

n3 
Areal Areal 

segment segment 
no. n 3' no. (n- l )  

Fig. 4. Mesh OAGH divided into n areal segments numbered 
from 0 to (n--1). Each areal segment contains n line seg- 
ments  nun~b'ered from 0 to (n--1) along OH. Each line 
segment contains n points. The total  number  of points 
reached at  the end of each line segment is indicated along 
A6~. 

line segment numbered nr)', and is the (n~')th point on 
this line. (NOtice that  the first areal segment and the 
first line segment are numbered zero.) Since each areal 
segment contains n ~ points and each line segment n 
points, the point considered ranks ((nS+r) 'n~+~'n)th 
among the n 3 points on the row. Dividing its rank by n 3 
gives the desired fractional co-ordinate 

X = 3 '  +r) ' /n+~' /n 9-. (6) 
Since we have chosen n =  1000, X is a number con- 

sisting of nine decimals only. The first class of three 
digits (thousandths) represents 3', the second class 
(millionths) represents 1)', and the third class (billionths) 
~ ' .  

For example,-given 

x--0.789, y =0.456, z=0.123; 

we have 
~=0-789, r) = 0"456 - 0"000, 789, ]=0 .123-0 .000 ,  456; 

whence 
~'=0.789, r)'=0"455, ~'=0.123, 

and 
X=0.123,455,789.  

the grid: 

~ / = n 2 X - n 2 ( - n r ) ' = n g X ( m o d .  1), } 

r)' = n X -  n]' - z'/n = nX(mod, l) - nX(mod. 0.001), 

3' = X - r ) ' / n -  ~'/n 2 = X -  X(mod. 0.001). 
(7) 

Here ~', 19', 3' and z, r), 3 coincide. Let x', y', z' be the 
co-ordinates of the point in the cell tha t  is rigorously 
translation equivalent to the point X on t h e  row. 
Matrix (2), combined with equations (7), then yields 

x ' = z = n 2 X ( m o d .  1), 

y' =r) + x/n =nX(mod . .  1) - nX(mod. 0-001) 

" + ng'X(mod. 1)/n, 

z' = 3 + r) ln + ~ ln ~ = X -  X(mod. 0-001) 
+ [nX(mod. 1 ) -nX(mod .  0.001)]/n 

+n2X(mod. 1)/n ~. 

Since n=1000,  X(mod. 0.001)=nX(mod. 1)In, etc., 
these equations can be written 

x '=ngX(mod .  1), y ' = n X ( m o d .  1), z ' = X .  (8) 

For example, given 

X=0.123,  455, 789, 
we have 

t '=0 .789  =~," r) '=0-455=~, 3 '=0-123=3;  

and 

x' =0.789, y' =0.455, 789, z' =0.123, 455, 789. 

The transformation of indices, according to matrix 
(1), is t )=h + k/n + l/n ~. (9) 

The index t) refers to a unit length a. We want an index 
H referring to the unit length OK, which is n ~ times 
larger, so that  

H = n % + n k + l .  (10) 

With n=1000,  the value of H reads 'h millions, k 
thousands, and l'. Since h,/¢ and 1 do not exceed _+ 499, 
there exists a unique H for every hkl. 

Application to electron density 
The electron density is usually written 

1"  
p( xyz ) = ~ ~ ~ ~ $'h~z exp [ - 2hi ( hx + ky + lz ) ] . (11) 

h k l  

In this equation x, y, .z refer to a point in the cell. 
We make an approximation ff we replace it by ,the 
neighboring point x', y', z' whose co-ordinates are given 
by equation (8). With this approximation, the effect of 
which will be discussed later, we find, from (8) and (10), 
that"  

hx' + Icy' + lz' = h[ngX (mod. 1)] + k[nX (mod. 1)] + lX.  
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If  we write ngX instead of ngX(mod. 1), and likewise 
n X  instead of nX(mod. 1), we only add an integer to 
the expression, which does not affect the function 
(because of its periodicity). I t  follows that  

hx' + ky' + lz' = (ngh + nk + l) X = HX.  

Letting Fhk ~ = F H and replacing ~] ~] ~] by ~], expression 
h k l  H 

(11) becomes 
• 1 

p(X) = ~ Z FHexp [-- 27riHX]. (12) 
H 

Expressing the phase angle in cycles (lC'= 1 cycle= 
2~ radians) and decimal parts thereof (Villarceau, 
1870a, b), in order to take advantage of the periodic 
character of the function, we finally write 

1 
p ( X ) = ~ Z F H e x p [ - - i H X C . ( m o d .  1)]. (13) 

This expression is particularly suited to the computa- 
tion of the electron density at selected points, for 
instance, at a tentative atomic site X 0. In order to 
ascertain whether the atom is correctly placed, the 
immediate neighborhood of 'the trial position X 0 is 
explored by evaluating the electron density at the six 

points X1, ~ = 3' ÷ I)'/n ÷ ( f  +_ 0-001)/n ~, I 

X3.,=5' 4 (I)' +_O'O01)/n÷f/ng,[ (14) 

Xs,~= ~' +_O'O01+r)'/n+f/n ~, J 

which form a pseudo-octahedron around X 0. The value 
of the electron-density function should be smaller at 
these points than at X o. 

Equation (13) can also be used to make a preliminary 
survey of crystal space or of Patterson space. The 
function is evaluated at 10 by 10 by 10 points, where 
(n being again taken as 1000) X can be expressed as 'p 
thousandths, q millionths, and r billionths', with p, q, r 
equal to zero or multiples of 100. This means taking 
every hundredth point on every hundredth line in every 
hundredth areal segment. Regions of minima can thus 
be blocked out. 

In practice we put X into a standard calculating 
machine and multiply by H, which, inside of intervals 
separated by large gaps, increases by one at a time. We 
read the first three decimal places of the product, 
rounded off if necessary, and transfer them to a table 
in which the FH'S are arranged in order of decreasing 
absolute values. The Tables for Harmonic Synthesis 
(Donnay & Hamburger, 1948b) list the values of 
F cos x (and therefore F sin x) to one decimal place, for 
F ranging from 1 to 100, with x given 'in millicycles. 
Using these tables we find F H cos H X  and F H sin H X  
for all values of H and add them in an adding machine. 
The final sum is p(X). 

Application to s t ruc ture  f a c t o r s  

With the' one-dimensional representation of the crystal, 
the structure factor takes the form 

l~' H = ~]f~ exp [-- iHX~C']. 
T~ 

I t  is useful when the trigonometric expansion is cumber- 
some and is particularly appropriate when digital com- 
puters, such as I.B.M. machines, are available. In this 
case summing over all the atoms in the cell, or over half 
their number ff a center of symmetry is present, is not 
a serious objection. The advantage lies in the fact that  
the angle is obtained by one multiplication (HX,~) 
rather than as the sum of three products (hx + ky + lz). 

D i s c u s s i o n  o f  t h e  a p p r o x i m a t i o n  

Let us evaluate A(mod. 1), where 

A = (hx + ky + lz) - HX.  

In view of equations (10) and (6), and since f =  x from 
equations (5), we have 

A(mod. 1 ) = [ k ( y - o ' - f  /n ) 

+ l ( z - ~ ' - I ) ' / n - , - f  /n2)](mod. 1). 

Using equations (5) again, it can be shown that  the 
maximum value of A(mod. 1) is 

0.000,51 k[+ 0.000,500,5 Ill 
Taking K =  L=20,  the maximum A(mod. 1) is 

0.01 + 0.010, 01 = 0.020, 02, 

corresponding to an angular difference of 20 mc'. 
This difference is of the same order of magnitude as 

that  of the uncertainty attached to hx ÷ ky ÷ lz, when 
x, y, z are given to three decimal places only: 

0.0005 (h + k + l) -- 0.0005 x 60 = 0"030, 

or a maximum possible angular error of 30 mc'. 
Finally, it might be remarked that  using x', y', z' 

instead of x, y, z means substituting a point inside the 
uncertainty parallelepiped for the point at its origip. 
Since the latter, however, is placed at the origin only 
because of the lack of accuracy with which its location 
is known, and really stands for any point inside the 
parallelepiped, the substituted point x', y', z' is as good 
as any other, and using it does not increase the error in 
the final result. 
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